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Elastic Postbuckling Predictions of Plates
Using Discrete Elements
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Theme

THIS paper describes a discrete-element analysis capability
for predicting the geometrically nonlinear, large-deflection

and postbuckling responses of elastic plates with initial curva-
tures. Both the initial and additional deflections may be of
the same order as the plate thickness. The nonlinear stiffness
equation is derived by using the minimum potential energy
theorem. The postbuckling response is predicted step by
step by a linear incremental approach. Basic procedures for
initiating a postbuckling configuration, correlating the middle-
surface loads with the transverse loads, treating the edge con-
ditions prescribed for the middle-surface movement, and find-
ing the distribution of membrane stress caused by a large,
deflection are provided.

Content
The basic assumptions underlying this development can be

described by the following set of finite-displacement, strain-
displacement relationships where the geometric nonlinearity
and initial deflection are incorporated in the plate,

ey =

- Zz&w foxby (Ic)

in which u and v are the membrane displacements; w is the
transverse deflection; and subscript 0 denotes initial quantity.
It is noted that the use of Eqs. (1) limits the validity of the
formulation to cases where the slopes of the deformed geome-
try are small relative to undeformed geometry.

Making use of Eqs. (1), the strain energy for a deformed
plate is expressed in terms of the geometry, the stiffness (mem-
brane, flexure, and coupling), and the derivatives of displace-
ments u, v, and w. According to the order of the displace-
ments, the strain energy is divided into second-, third-, and
fourth-order groups. After adding the potential of the ap-
plied external loads to the strain energy, the discretized form
of the potential energy for the discrete element is obtained by
making use of the assumed displacement functions for what-
ever plate element model is chosen. Performing the partial
differentiation of the total potential energy with respect to
each degree of freedom, the nonlinear stiffness matrix equa-
tion for a discrete element is obtained.
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where {p} and {q} are vectors of nodal loads and displace-
ments, respectively; [k] is the linear stiffness matrix; [no],
[HI], and [n2] are the zero-, first-, and second-order incre-
mental stiffness matrices which are indirectly functions of
zero-, first-, and second-order of [q + q0} gross displacement
vectors, respectively. Eq. (2) is appropriate for a mathe-
matical iterative procedure.

Performing a first-order Taylor expansion with reference to
a known equilibrium state, Eq. (2) is transformed to a form
appropriate for a linear incremental procedure.

{ Ap} = <[*] + [n0] + [m] + M){ Aq} (3)

where A denotes an incremental operator. The overall struc-
tural formulation is obtained by adding the formulations of
individual elements.

In performing the incremental procedure, the increments of
displacement vector can not be assumed. The loading pat-
tern is, however, usually known and the increments of load
vector can be applied. This requires an inverse of the stiff-
ness matrix in each incremental step,

{AQUepi+i = ([#] + [#„] + [#i] + [A^Di-MAPji+i (4)
where the capital letters are adopted to represent the as-
sembled overall structural equations. Since the stiffness ma-
trices thus derived are given in terms of the geometry of the
undeformed elements, the application of Eq. (4) requires no
coordinate transformation.

In analyzing the postbuckling response of plates, the mem-
brane boundary conditions need to be considered in addition
to the flexural boundary conditions. The latter are treated
directly in solving Eq. (4), but the former must be treated
separately, because of the coupling of membrane and flexure ac-
tions in the finite-deflection range. In order to treat the mem-
brane edge conditions, the distribution of edge membrane stress
and membrane displacement need to be determined. From the
principle of statics, the stress-strain and strain-displacement
equations are rewritten in a form where nodal membrane
forces are expressed in terms of nodal degrees of freedom,

Qom} + {Qf + Qof } Qof} (5)
where the vector {Pm} denotes the nodal membrane forces;
{ Qm} and { Qf } are the vectors of nodal membrane and flexure
displacements, respectively; [Km] is the membrane portion
of the linear stiffness matrix; and [F] relates the nodal mem-
brane forces to the nodal flexure displacements.

At the beginning of each incremental step, Eq. (5) is solved
by substituting the current nodal flexure displacements and
imposing the membrane boundary conditions,

{Qm + Qom} = [Km]
!Qf (6)

Having obtained the solution of flexure displacements { Qf
+ Qof} and membrane displacements {Qm + Qom} a^ the
beginning of each incremental step, the distribution of nodal
membrane stress is found by using Eq. (5). From these dis-
placements, the incremental stiffness matrices in Eq. (4) are
determined and the next incremental step can then be carried
out.
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Fig. 1 Comparison of postbuckling center deflection of a
square flat plate (Poisson's ratio = 0.316).

When a plate is subjected to in-plane loads, Eq. (4) is not
directly applicable because of the intricate membrane-flexure
coupling effect. However, Eq. (4) is directly solvable if only
the transverse loads are applied. In each incremental step,
the in-plane compressive load increments { APX}, { APy}, and
{ APXy} are transformed into transverse load increment { APZ}
by the form,
{APZ} = { APX}52(^ +

(7)

The transverse load increment { APZ} is then applied and Eq.
(4) is solved for flexure displacements. The procedure de-
scribed in the previous paragraph is thus followed. It is
noted that when applying Eq. (7) to the first incremental
step, the net deflection w is zero.

For the case of a flat plate with no initial curvature, the
term w0 vanishes, and Eq. (7) does not apply for the first step.
In order to transform the in-plane compression into a lateral
load, a slightly deflected shape must be initiated. Two dis-
turbing techniques are suggested: 1) a distribution of a very
small initial curvature is assumed to the plate; or 2) a dis-
tribution of a very small disturbing load is applied trans-
versely to the plate. It is desirable that the distribution of
the disturbing initial curvature or initial load be similar to
the expected buckled shape; thus, for a single wave the curva-
ture or load distribution is a half sine wave, but for a double
wave postbuckled shape the load or curvature is distributed
as a full sine wave. In the case of a flat plate, the bifurcation
load is usually desired before the prediction of the post-
buckling path. This load is found by solving the eigenvalue
problem in which the determinant of the sum of matrices [K]
and [A^i] vanishes.

To illustrate the potential of the method, numerical calcu-
lations of examples have been performed by using a conform-
ing rectangular plate element. (The details are given in the
full paper.) The first example chosen was a square plate sub-
jected to an in-plane compression acting on two opposite
edges. Two sets of membrane boundary condition were con-
sidered; in both sets the loaded edges of the plate were main-
tained straight with zero shearing stress, but in 1) the un-
loaded edges were maintained straight by a distribution of
normal membrane stress, the resultant of which is zero, and
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Fig. 2 Load-deflection of simply-supported square plates
with initial deflections (Poisson's ratio = 0.316).

the edges were allowed to move bodily in the plane of the
plate and the shearing stress is zero, and in 2) the unloaded
edges were free to wave in the plane of the plate and the nor-
mal membrane stress and shearing stress were zeros. The
results for center deflection vs in-plane compression for both
membrane boundary conditions are shown in Fig, 1. The
solid circles describe the incremental step sizes used; sixteen
discrete elements were used to idealize a quadrant of the
plate. Alternative analytical results for this problem with
two aforementioned membrane boundary conditions are
available in Refs. 2 and 3, respectively. They are also shown
in Fig. 1 for comparison. The agreement is fair. The agree-
ment could be improved if 1) more terms are used in the series
solutions in Refs. 1 and 2, and 2) more sophisticated mem-
brane displacement, more incremental steps, and more ele-
ments are used in the present method.

The second example chosen was a square plate with various
degrees of initial curvature. The edges were simply sup-
ported with membrane boundary condition (1). The results
for prebuckling and postbuckling center deflection vs com-
pression are shown in Fig. 2. For the cases that the maxi-
mum initial deflection equals to 0.04A and Q.lh (h is the thick-
ness) alternative analytical results are available in Ref. 3.
Good agreement is observed. In this figure, the results for
the case where maximum initial deflection equals to 0.5/& are
not available from Ref. 3 for comparison.

From the results presented, it may be concluded that the
ideas introduced here may provide a reasonable basis for the
extension of discrete element method for the postbuckling
problems.

References
1 Levy, S., "Bending of Rectangular Plates with Large Deflec-

tions," TR 737, 1942, NACA.
2 Coan, J. M., "Large-Deflection Theory for Plates with Small

Initial Curvature Loaded in Edge Compression," Journal of Ap-
plied Mechanics, Vol. 18, No. 2, June, 1951, pp. 143-151.

8 Hu, P. C., Lundquist, E. E., and Batdorf, S. B., "Effect of
Small Deviations from Flatness on Effective Width and Buckling
of Plates in Compression," TN 1124, Sept. 1946, NACA.


